Lattice Boltzmann modeling of dendritic growth in forced and natural convection
نویسندگان
چکیده
A two-dimensional (2D) coupledmodel is developed for the simulation of dendritic growth during alloy solidification in the presence of forced and natural convection. Instead of conventional continuum-based Navier–Stokes (NS) solvers, the present model adopts a kinetic-based lattice Boltzmann method (LBM), which describes flow dynamics by the evolution of distribution functions of moving pseudo-particles, for the numerical computations of flow dynamics as well as thermal and solutal transport. The dendritic growth is modeled using a solutal equilibrium approach previously proposed by Zhu and Stefanescu (ZS), in which the evolution of the solid/liquid interface is driven by the difference between the local equilibrium composition and the local actual liquid composition. The local equilibrium composition is calculated from the local temperature and curvature. The local temperature and actual liquid composition, controlled by both diffusion and convection, are obtained by solving the LB equations using the lattice Bhatnagar–Gross–Krook (LBGK) scheme. Detailed model validation is performed by comparing the simulations with analytical predictions, which demonstrates the quantitative capability of the proposed model. Furthermore, the convective dendritic growth features predicted by the present model are compared with those obtained from the Zhu–Stefanescu and Navier–Stokes (ZS–NS)model, in which the fluid flow is calculated using an NS solver. It is found that the evolution of the solid fraction of dendritic growth calculated by both models coincides well. However, the present model has the significant advantages of numerical stability and computational efficiency for the simulation of dendritic growth with melt convection. © 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
Three-Dimensional Lattice Boltzmann Modeling of Dendritic Solidification under Forced and Natural Convection
A three-dimensional (3D) lattice Boltzmann (LB) model is developed to simulate the dendritic growth during solidification of Al-Cu alloys under forced and natural convection. The LB method is used to solve for solute diffusion and fluid flow. It is assumed that the dendritic growth is driven by the difference between the local actual and local equilibrium composition of the liquid in the interf...
متن کاملLattice Boltzmann simulation of EGM and solid particle trajectory due to conjugate natural convection
The purpose of this paper is to investigate the EGM method and the behavior of a solid particle suspended in a twodimensional rectangular cavity due to conjugate natural convection. A thermal lattice Boltzmann BGK model is implemented to simulate the two dimensional natural convection and the particle phase was modeled using the Lagrangian–Lagrangian approach where the solid particles are treat...
متن کاملLattice Boltzmann Simulation of Nanofluids Natural Convection Heat Transfer in Concentric Annulus (TECHNICAL NOTE)
Abstract This study is applied Lattice Boltzmann Method to investigate the natural convection flow utilizing nanofluids in a concentric annulus. A numerical strategy presents for dealing with curved boundaries of second order accuracy for both velocity and temperature fields. The fluid between the cylinders is a water-based nanofluid containing different types of nanoparticles: copper (Cu), a...
متن کاملNatural Convection and Entropy Generation in Γ-Shaped Enclosure Using Lattice Boltzmann Method
This work presents a numerical analysis of entropy generation in Γ-Shaped enclosure that was submitted to the natural convection process using a simple thermal lattice Boltzmann method (TLBM) with the Boussinesq approximation. A 2D thermal lattice Boltzmann method with 9 velocities, D2Q9, is used to solve the thermal flow problem. The simulations are performed at a constant Prandtl number (Pr ...
متن کاملLattice Boltzmann method for MHD natural convection of CuO/water nanofluid in a wavy-walled cavity with sinusoidal temperature distribution
In this paper, natural convection heat transfer of CuO-water Nanofluid within a wavy-walled cavity and subjected to a uniform magnetic field is examined by adopting the lattice Boltzmann model. The left wavy wall is heated sinusoidal, while the right flat wall is maintained at the constant temperature of Tc. The top and the bottom horizontal walls are smooth and insulated against heat and mass....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Mathematics with Applications
دوره 61 شماره
صفحات -
تاریخ انتشار 2011